随着汽车在人们的工作、生产和生活中扮演着越来越重要的角色,汽车的保有量也在急速增加。由此带来的交通管理问题也变得越来越复杂,智能交通系统的建立是很好的解决问题的方法。而车牌识别技术在智能交通系统中占有十分重要的地位。停车厂、收费站、生产企业的门禁管理都有车牌识别技术的身影。
在车辆车牌识别技术中的图像提取、字符分割起、字符识别过程中,数字图像处理技术起到了重要作用。但由于图像提取出现场可能存在因时间、光线、天气的变化而造成的干扰使车牌成像效果较差的问题。所以目前现有的车牌识别系统都存在因环境变化而产生的识别率变化的问题。
该系统将获得的机动车所有的图像实行串连处理后,会用数字字符的方法输送得出的信息,这样不仅存储空间少,车牌识别系统维修电话,而且操作更加便捷。由此看来该课题研究的内容发展空间很广泛,它的速度与方便性是人工汽车牌照识别远远达不到的,智能车牌识别系统,这对交通发展领域有深远的影响。
文章对计算机图像处理、人工智能、模式识别等车牌识别的背景知识进行深入研究,摸索出了用数字图像知识进行车牌识别的方法并重点研究,对在较为复杂的背景下的车牌定位、字符分割的车牌字符识别算法进行了重点研究,濮阳车牌识别系统,在识别上取得了良好效果。
车牌定位模块:该单元是指在对原始车辆图像进行图像增强处理和降噪处理后还需对图像进行定位处理,即对在一张完整的车辆图像中去掉我们不需要的部分定位出车牌区域。在一张拍摄的车辆图像中,只有含车牌号码的部分,对识别工作有意义,我们可以将其他区域设法除去,即从整个车辆图像中准确的找出并分离出车牌所在位置的图像,这样做的好处是可以节省系统识别时间。